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ABSTRACT

In this second part of a two-part paper, the impacts of soil texture and vegetation type misclassification and

their combined effect on soil moisture, evapotranspiration, and total runoff simulation are investigated using the

Noah model. The results show that these impacts are significant for most regions and soil layers, although they

vary depending on soil texture classification, vegetation type, and season. The use of site-observed soil texture

classification and vegetation type in the model does not necessarily improve anomaly correlations and reduce

mean absolute error for soil moisture simulations. Instead, results are mixed when examining all regions and soil

layers. This is attributed to the compensation effects (e.g., effect of ill-calibratedmodel parameters), asNoah has

been more or less calibrated with model-specified soil texture classification and vegetation type. The site-based

analysis shows that Noah can reasonably simulate the variation of daily evapotranspiration, soil moisture, and

total runoff when soil texture classification (vegetation type) is corrected from loam (forest) to clay (grasslands)

or vice versa. This suggests that the performance of Noah can be further improved by tuning model parameters

when site-observed soil texture and vegetation type are used.

1. Introduction

It is well known that soil moisture variations in time and

space are controlled by many factors such as soil texture,

vegetation, and topography. In turn, soil moisture also

affects the partitioning of net radiation into sensible heat

and latent heat and the partitioning of precipitation into

evapotranspiration (ET), surface runoff, and subsurface

infiltration. Evaluating phase 2 of the North American

Land Data Assimilation System (NLDAS-2) soil mois-

ture using in situ observations is necessary for continued

model improvement. Knowledge of the impact of mis-

classification of soil texture classification and vegetation

type is important for understanding the spatial and tem-

poral variations in NLDAS-2 performance. In the Noah

land surface model, soil moisture is redistributed through

infiltration, vegetation transpiration, and bare soil evap-

oration. Infiltration is the process of water, from sources

such as rainfall and snowmelt, entering the soil. Vegeta-

tion transpiration is the process of water movement from

plant uptake in the root zone through the leaves, stems,

and flowers into the atmosphere. Evaporation is the

process by which soil water changes state andmoves from
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the surface to the atmosphere. Soil moisture increases

when inputs, including rainfall and snowmelt, exceed out-

puts, such as surface runoff, base flow, and evapotranspi-

ration. Soilmoisture decreaseswhenoutputs exceed inputs.

Soil water storage and redistribution are a function of soil

pore space and pore-size distribution, which are governed

by soil texture. In general, fine-textured soils (i.e., those

with high clay content) have higher porosity and totalwater

holding capacity than coarse-textured soils (i.e., those

with a high sand content).

Soil texture directly affects soil hydraulic conductiv-

ity, field capacity, and wilting point, which are important

soil hydraulic parameters for soil moisture simulation.

The water between field capacity and wilting point (i.e.,

plant-available water) can be used for plant uptake and

evapotranspiration. Plant-available water is generally

lower in coarse-textured soils (e.g., sands and loamy

sands), as the large soil pores have limited ability to

retain water, and higher for medium-textured soils (e.g.,

loams, sandy loams, silt loams, silts, clay loams, sandy

clay loams, and silty clay loams) because they have an

ideal combination of meso- and micropores. Hydraulic

conductivity controls how fast water infiltrates into soil

and how fast the water becomes base flow as a result of

gravity drainage. For example, fine-textured soils tend

to have a lower hydraulic conductivity than coarse-

textured soils because coarse-textured soils have larger

pores and lower tortuosity, both of which facilitate more

rapid water movement. Soil texture determines total

water storage, available water holding capacity, and

water movement in soil. Therefore, soil texture directly

affects soil moisture (both its magnitude and variability)

and indirectly affects evapotranspiration and total run-

off Q (Fernandez-Illescas et al. 2001; Wang et al. 2009).

Soil moisture is modified by evapotranspiration while

evapotranspiration is controlled by rainfall interception,

net radiation, advection, turbulent transport, leaf area,

plant-available water capacity, and land surface pa-

rameters (McNaughton and Jarvis 1983; Santanello et al.

2013; Zhang et al. 2001). The relative importance of

these factors depends on climate, soil, and vegetation

conditions. Generally speaking, the principal controls

on evapotranspiration are plant-available water and

canopy resistance under dry conditions. In contrast,

under wet conditions the dominant controls are advec-

tion, net radiation, leaf area, and turbulent transport.

Under intermediate conditions, the relative importance

of these factors varies depending on climate, soil, and

vegetation (Zhang et al. 2001). Because water that is

transpired comes from the soil, plants with deeper roots

tend to have more constant transpiration rates because

they can access a larger soil volume. Herbaceous plants

(e.g., crops and grasses) generally transpire less than

woody plants (e.g., trees and shrubs) because they usu-

ally have less extensive foliage (Swank and Douglass

1974) and more shallow roots. Tennant (1976) showed

that the plant-available water in a wheat field depended

more on rooting depth than on the soil hydraulic prop-

erties of the five different soils. Forests tend to produce

more evapotranspiration than pasture and crops be-

cause they have deeper roots and a greater leaf area

(Turner 1991; Nepstad et al. 1994; Hodnett et al. 1995).

Vegetation mismatches can set the wrong rooting depth

and leaf area index in land surface models, which will

result in incorrect evapotranspiration simulation. In

Noah, the root zone is set as the top 1-m soil layer for

cropland, grassland, open shrubland, closed shrubland,

andwooded grassland land-use classes. It is set as the top

2-m soil layer for mixed cover, deciduous broadleaf

forest, deciduous needleleaf forest, evergreen broadleaf

forest, and evergreen needleleaf forest.

Soil moisture influences both hydrology (e.g., surface

runoff, base flow, and evapotranspiration) and soil

thermodynamics (e.g., soil temperature, land surface

temperature, and ground heat flux) in Noah. Seasonal

variation of plant root density is highly dependent on

mean root-zone soil temperature, as suggested by

Dickinson et al. (1993), and variations in plant root

density will cause seasonal variations in transpiration

(Wei et al. 2013). This mechanism has been im-

plemented in the NLDAS-2 Noah model (Chen et al.

1996; Ek et al. 2003) to make evaporation simulation

more realistic (Wei et al. 2013). In addition, soil tem-

perature and ground heat flux impact land surface

temperature, which will further affect evapotranspira-

tion (Ek and Holtslag 2004). Soil moisture influences

soil thermodynamics, and this can indirectly affect

evapotranspiration. It is clear that soil moisture is a key

variable in the Noah water cycle, but it is also in-

fluential in the Noah energy cycle. Soil texture and

vegetation type strongly affect soil moisture, evapo-

transpiration, and total runoff simulations through many

complex linear and nonlinear physical processes (Figs. 1,

2). Therefore, it is important to investigate the impacts of

soil texture and vegetation mismatches on soil moisture,

evapotranspiration, and total runoff simulations. This

study is the second part of our two-part paper. In the first

part, in situ soil moisture measurements collected from

the North American Soil Moisture Database (NASMD)

are used to evaluate NLDAS-2 soil moisture products

generated from the four land surface models (Xia et al.

2015). The next section describes the soil, vegetation, and

validation data. A model description including Noah

hydrology and thermodynamics is described in section 3,

the results are presented in section 4, and conclusions are

discussed in section 5.
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2. Dataset descriptions

The soil texture database over the continental United

States was derived from the 1-km State Soil Geographic

(STATSGO) database of Miller andWhite (1998), which

has 13 soil texture classes. The 13-category vegetation

classification was derived from the global, 1-km, Ad-

vanced Very High Resolution Radiometer (AVHRR)-

based database provided by the University of Maryland

(UMD; Hansen et al. 2000). Daily soil moisture provided

by NASMD in seven regions—Alabama (AL), Colorado

(CO), Michigan (MI), Nebraska (NE), Oklahoma (OK),

West Texas (WTX), and Utah (UT)—were used for

validation. These data include 385 sites from seven

soil moisture measurement networks (Nebraska Au-

tomated Weather Data Network, NOAA Climate

Reference Network, Michigan Automated Weather

Network, Oklahoma Mesonet, Snowpack Telemetry

Network, Soil Climate Analysis Network, and West

Texas Mesonet). More details about the networks and

measurement accuracy can be found in Xia et al.

(2015). Soil moisture data are available for 5–14 years,

depending on the network.

3. Model and experiment design

a. Noah hydrology

In Noah, version 2.8, the prognostic equation for the

volumetric soil moisture content Q is

›Q

›t
5

›

›z

�
D

›Q

›z

�
1

›K

›z
1FQ , (1)

where D is the soil water diffusivity given by

D5 (bKscs/Qs)(Q/Qs)
b12 (Ek 2005), K is hydraulic

conductivity given by K5Ks(Q/Qs)
2b13 (Cosby et al.

1984), and FQ is source and sink (i.e., precipitation and

evapotranspiration) for soil water. Variables Ks, cs, Qs,

and b are saturation hydraulic conductivity, air entry

potential, soil porosity, and b parameter, respectively.

They are determined by soil texture classes. A more

accurate saturated hydraulic conductivity value was

FIG. 1. Schematic diagram of Noah [modified from Chen and Dudhia (2001)].

FIG. 2. Schematic diagram of the impact of soil texture and vege-

tation type on soil moisture, evapotranspiration, and total runoff.
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computed during phase 2 of the Distributed Model

Intercomparison Project (Smith et al. 2012), and that

new value has since been implemented in Noah, ver-

sion 2.8. The soil hydrology and thermodynamics de-

scribed below are based on Noah, version 2.8. For

brevity, we will refer to themodel simply as Noah in the

rest of the paper.

Noah includes four soil layers: 0–10, 10–40, 40–100,

and 100–200 cm. For crop, grass, and shrublands, Noah

sets the top three soil layers as the root zone. Equation

(1) is integrated over the four soil layers and FQ is ex-

panded to obtain

dz
1

›Q1

›t
52D

�
›Q

›z

�
z
1

2Kz
1
1Pd2Qsurf 2Edir2 a1Et ,

(2a)
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›Q2
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�
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1
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�
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�
z
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1Kz
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2
2 a2Et ,

(2b)
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3
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(2c)

and

dz
4

›Q4

›z
5D

�
›Q

›z

�
z
3

1Kz
3
2Kz

4
, (2d)

where ai is the ith soil layer weight coefficients

a1 5 dz1 /(dz1 1 dz2 1 dz3 ), a2 5 dz2 /(dz1 1 dz2 1 dz3 ), and

a3 5 dz3 /(dz1 1 dz2 1 dz3 ); dzi is the ith soil layer thick-

ness; Pd is the precipitation not intercepted by the can-

opy;Qsurf is the surface runoff;Edir is thedirect evaporation

frombare soil;Et is the canopy evapotranspiration; andKz4

is the moisture loss due to gravitational percolation out of

the fourth soil layer (i.e., base flow).

For forest types, Noah defines all four soil layers as the

root zone. Therefore, the integrated Eq. (1) is written as
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where a1 5 dz1 / (dz1 1 dz2 1 dz3 1 dz4 ), a2 5 dz2 / (dz1 1
dz2 1dz3 1 dz4 ), a3 5 dz3 /(dz1 1 dz2 1 dz3 1 dz4 ), and a4 5
dz4 /(dz1 1dz2 1 dz3 1dz4 ).

In Eqs. (2) and (3), the direct evaporation from the

bare soil is represented as

Edir5 (12 y)min

"
2D

�
›Q

›z

�
z
1

2Kz
1
,Ep

#
, (4)

and the canopy evapotranspiration is represented as

Et 5 yEpBc

�
12

�
Wc

S

�n�
, (5)

where Ep is the potential evaporation; y is the green

vegetation fraction; Wc is the intercepted canopy

water content; S is the maximum allowed Wc value

(interception capacity); n 5 0.5; and Bc is the re-

sistance term including canopy resistance, reflecting

soil moisture stress.

The variableBc is represented as (Ek andMahrt 1991;

Chen et al. 1996)

Bc 5
11 (D/Rr)

11RcCh1 (D/Rr)
, (6)

where Ch is the surface exchange coefficient for heat

and soil moisture; Rr is a function of surface air

temperature, surface pressure, and Ch; Rc is the can-

opy resistance including soil moisture stress function

F4 (defined below) with a range from 0 to 1; and D
depends on the slope of the saturation specific

humidity curve.

Noah uses a Jarvis-type model (Jarvis 1976) to cal-

culate Rc. The formulation is expressed as a minimum

resistance multiplied by a series of independent stress

functions (Jacquemin and Noilhan 1990):

Rc5
Rc

min

LAIF1F2F3dF4

, (7)

F1 5
(Rc

min
/Rc

max
)1 f

11 f
where f 5 0:55

Rg

Rg
l

2

LAI
,

F25
1

11 [q*(Ta)2 qa]
,

F35 12B1(Tref 2Ta)
2 ,

and
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F45 �
4

i51

(Qi2Qw)dz
i

(Qref 2Qw)(dz
1
1 dz

2
1dz

3
1 dz

4
)
,

whereRcmin
is theminimum canopy resistance,Rcmax

is the

maximum canopy resistance, and LAI is the leaf area

index with seasonal variation for a given vegetation type.

The seasonal factor d represents the seasonal variation of

root distribution for a given vegetation class. The func-

tions F1, F2, F3, and F4 vary from 0 to 1 and represent the

effects of solar radiation, vapor pressure deficit, air tem-

perature, and soil moisture, respectively. Variable Rg is

the incoming solar radiation, and Rgl is a lower limit of

30Wm22 for forests and 100Wm22 for crops (Noilhan

and Planton 1989). The B1 is an empirical coefficient

(0.0016). Here q*(Ta) is the surface saturated specific

humidity, qa is the surface specific humidity, Tref is the

reference air temperature, Ta is the air temperature, and

Qref andQw are the field capacity and wilting point of soil

moisture for a given soil texture. The seasonal LAI is

calculated depending on vegetation classes as

LAI5LAImin1b(LAImax2LAImin) , (8)

where b5 (y2 ymin)/(ymax 2 ymin); ymax and ymin are the

annual maximum and minimum vegetation fraction at

each grid point, respectively (Wei et al. 2013); and

LAImax and LAImin are the maximum and minimum

LAI, respectively [obtained from Koster and Suarez

(1996)]. The seasonal factor is calculated following the

formulation suggested by Dickinson et al. (1993):

d5 12 0:0016(Topt 2Tg
m

)2 , (9)

where Topt is the optimum root growth temperature

(298K) and Tgm is the mean soil temperature over the

root zone depending on vegetation classes.

In Eqs. (2a) and (3a),Qsurf is represented as (Schaake

et al. 1996)

Qsurf 5
P2
d

(Pd1 Ic)
, (10)

where Ic is the maximum infiltration, calculated by

Ic5Qb[12 exp(2KDt)] , (11)

where Qb is the total column soil moisture and Dt is the
time step.

b. Noah thermodynamics

The land surface temperature Ts is determined

by a single linearized surface energy balance equation

representing the combined ground–vegetation surface

(Mahrt and Ek 1984). The surface energy balance can

be expressed as

(12a)SY 1LY2sT4
s 5H1LH1G , (12)

where SY is downward shortwave radiation, LY is

downward longwave radiation, sT4
s is upward longwave

radiation (1 is used in Noah for emissivity), and a is

surface albedo (bare soil or vegetation). Variable H is

sensible heat flux, LH is latent heat flux (i.e., energy used

for evaporation from bare soil and canopy, transpira-

tion, and sublimation on snow surface), andG is ground

heat flux. Using sT4
s ’sT4

af11 4[(Ts 2Ta)/Ta]g and

G52lT [(Ts 2Tg1 )/Dz], we can solve forTs in Eq. (12) as

Ts 5

 
F1 3sT4

a 2H2LH2
lTTg

1

Dz

!
�
4sT3

a 2
lT
Dz

� , (13)

where F5 (12a)SY 1LY,Ta is 2-m air temperature, lT
is the soil thermal conductivity, Tg1 is the soil tempera-

ture at the first soil layer, and Dz is the midpoint of the

first soil layer. There is a negative feedback between Ts

and LH, as shown in Eqs. (12) and (13).

Land surface temperature is controlled by sensible

heat flux, latent heat flux, ground heat flux, net incoming

shortwave radiation, and downward longwave radiation.

Latent heat flux and ground heat flux are closely related

to soil moisture content, which has been discussed in

section 3a. Soil temperature is controlled by the ground

heat flux through a diffusion equation:

CQ

›Tg

›t
5

›

›z

�
lT

›Tg

›z

�
, (14)

where Tg is the soil temperature and CQ is the volu-

metric heat capacity of soil. Variable CQ is a linear

function of soil moisture content and lT is a nonlinear

function of soil moisture that increases by several orders

of magnitude from dry to wet soil conditions. The layer-

integrated form of Eq. (14) for the ith soil layer is

DziCQ
i

›Tg
i

›t
5

�
lT

›Tg

›z

�
z
i11

2

�
lT

›Tg

›z

�
z
i

. (15)

In the top soil layer, the last term in Eq. (15) represents

the surface ground heat flux and is calculated using the

land surface temperature. The gradient at the bottom of

the model is computed from a user-specified constant

boundary temperature (data were provided by the Noah

group). Therefore, soil moisture affects soil temperature

and ground heat flux. These feedbacks will further affect
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the land surface temperature and evaporation and/or

evapotranspiration.

Analysis of Eqs. (1)–(15) shows that the physical

processes affecting soil moisture are complicated. In

general, soil texture determines soil hydraulic conduc-

tivity, soil porosity (field capacity), and wilting point.

These soil hydraulic parameters modulate soil moisture.

Soil moisture change will affect evapotranspiration

through F4 in Eq. (7). Changes in evapotranspiration

will inversely affect soil moisture through the right term

in Eqs. (2) and (3) for the entire root zone. In addition,

vegetation type can affect soil moisture by changing

rooting depth. It also constrains evapotranspiration

through canopy resistance and LAI, which further af-

fects soil moisture. Soil temperature also influences

evapotranspiration through seasonal variations of root

distribution. Soil moisture affects soil temperature

through lT and CQ, and it affects sensible heat flux (SH)

and land surface temperature. Figure 2 details how soil

texture and vegetation type affect soil moisture and the

other state variables and fluxes.

c. Soil and vegetation parameters setup

In NLDAS-2, the soil texture over the continental

United States was derived from the 1-km STATSGO

database. Noah assumes a vertically uniform soil texture

class based on the predominant soil texture of the top

5-cm layer. Outside of the continental United States, the

soil texture database was derived from the 5-min Agri-

cultural Research Service and Food and Agriculture

Organization (ARS FAO) data of Reynolds et al.

(2000). For each 1/88 grid cell in NLDAS-2, the most

common FAO soil class is used. Several soil physical and

hydrological parameters used in hydrology and ther-

modynamics are prescribed through the Noah lookup

tables. These include soil porosity, reference soil water

content (field capacity equivalent), permanent wilting

point, saturated hydraulic conductivity, b parameter,

saturated soil water diffusivity, and air entry soil matric

potential, among others. These parameters are de-

pendent on soil texture classes, and they are computed

based on the work of Cosby et al. (1984), except for Ks,

which is based on the work of Rawls et al. (1991). These

parameters, similar to soil texture classes, are uniform

for all four soil layers.

The vegetation classification was derived from the

global 1-km UMD database. For each 1/88 grid cell, the

most common vegetation type is used for each grid cell.

The vegetation parameters related toNoah soil hydrology

and thermodynamics, such as root depth, root density,

minimum stomatal resistance, roughness length, green

vegetation fraction, and leaf area index are obtained ei-

ther from satellite retrievals or from the Noah lookup

tables. More information about the soil and vegetation

database, including maps and tables, may be viewed on

the NLDAS website (http://www.emc.ncep.noaa.gov/

mmb/nldas/LDAS8th/soils/LDASsoils.shtml and http://

www.emc.ncep.noaa.gov/mmb/nldas/LDAS8th/MAPPED.

VEG/LDASmapveg.shtml).

d. Experiment design and spinup

Noah output fromNLDAS-2 was used as a benchmark

(control run, hereafter calledCrun) in this study (e.g., Xia

et al. 2012a,b). In addition, three sensitivity tests were

conducted. The first test uses site-specific soil texture

from 385 NASMD sites to replace default soil texture in

the control run (hereafter called Srun). The second test

uses site-specific vegetation type to replace the default

vegetation type in the control run (hereafter called

Vrun), and the third test uses both the site-specific soil

texture and vegetation type to replace the default types in

the control run (hereafter called SVrun). It should be

noted that only grid points with NASMD information

were used in the three sensitivity experiments. To mini-

mize the effect of initial conditions such as soil moisture,

soil temperature, canopywater content, and snowpack on

Noah simulations, we used the initial conditions from

1 January 1989 obtained from aNoah control run and ran

each simulation to 1 January 1999 (10-yr spinup). We

used the output from 1 January 1999 to 31 December

2012 to calculate statistics for the comparative analysis.

NLDAS-related experiments have demonstrated that a

10-yr spinup is sufficient to overcome the impact of the

initial conditions on Noah simulations (Cosgrove et al.

2003; Xia et al. 2012a).

The statistics used in this study are daily anomaly

Pearson correlationsAC, root-mean-square error RMSE,

and mean absolute error MAE, as used in the previous

studies from Xia et al. (2014, 2015). To investigate if the

difference between the sensitivity tests and Noah control

is significant at the 95% confidence level, we calculated

the confidence interval (CI) for AC and RMSE. For daily

AC, we first converted the AC value to z0 using Fisher’s z0

transformation (Hotelling 1953) calculator (http://

onlinestatbook.com/2/calculators/r_to_z.html), then

computed a CI in terms of z0, and finally converted the

CI back to AC. To test if two dependent correlations are

significantly different, we used the three correlation

coefficients and their associated sample sizes to compute

the probability value and the z score (Steiger’s z test;

Steiger 1980; Saville 1990). A probability value of less

than 0.05 indicates that the two correlation coefficients

are significantly different from each other. For the cal-

culation of RMSE at the 95% confidence level, we first

compute RMSE for a given period and then compute

the standard deviation Sd for a time series
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Sd5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
i5N

i51

(jSMi2Oij2RMSE)2

N2 1

vuuut
, (16)

where SM and O are the simulated and observed daily

soil moisture, respectively, andN is the number of days in

the measured records. The RMSE CI (Congalton and

Green 2009) at the 95% confidence level is expressed as

RMSE6 1:96(SRMSE), (17)

whereSRMSE5 Sd/
ffiffiffiffi
N

p
. The CI varies from RMSE2

1.96(SRMSE) to RMSE 1 1.96(SRMSE) at the 95%

confidence level.We compute CIs for each experiment in

addition to Crun. Statistical significance is then deter-

mined by whether both CIs overlap. If both CIs overlap,

this suggests that the sensitivity test is not significant.

Otherwise, it is significant at the 95% confidence level.

This method has been previously used to assess the

statistical significance of soil moisture assimilation on

water fluxes (e.g., total runoff) and state variables (e.g.,

soil moisture and soil temperature) in Noah (Kumar

et al. 2009, 2014). In addition, the signed change in

MAE was computed for each day in the study period,

and a two-sample Student’s t test was used to assess

whether the mean change in MAE was significantly

different from zero (at the 95% confidence level).

4. Results

The soil texture parameter used in NLDAS-2 is com-

pared with the corresponding texture information from

the observations (NASMD; Fig. 3). The representative-

ness of NLDAS-2 soil texture varies by region, with

generally good correspondence in CO, MI, and UT and

somewhatweaker correspondence inNE,OK, andWTX.

The largest differences in soil texture are inAL, where all

but one site are classified as having sandy loam soils in

NLDAS-2. The corresponding observed soil textures for

these sites range from clay to loamy sand.

Differences in land cover between NLDAS-2 and

NASMD (Fig. 4) are consistently larger than those in soil

texture. Some of this is due to preferential siting of

the observation sites. For example, NASMD-reported

land cover in AL, OK, MI, and WTX are predominantly

grassland, as the networks in these regions prefer to

establish sites in locations with grassland vegetation

(Schroeder et al. 2005; Illston et al. 2008). Grassland is

generally representative of surrounding land cover in

most of WTX, but it is less representative in the agri-

cultural regions of OK and MI and the forested regions

of AL and MI. This may explain the better correspon-

dence of land cover types between NLDAS-2 and

NASMD in WTX as compared with AL, OK, and MI.

In CO and UT, the majority of NASMD-reported land

cover is mixed forest cover, while the NLDAS-2 clas-

sified types are more frequently woodland, grassland,

and evergreen needle leaf forest. Not surprisingly,

NLDAS-2 land cover in NE is dominated by cropland

and, to a lesser extent, grassland. However, NASMD-

reported vegetation is more frequently closed shrub-

land. Another reason for lack of correspondence is

because of the coarse resolution of the NLDAS-2

domain, as it could easily be nonrepresentative of the

point location information.

a. Impact of soil texture and vegetation type mismatch

1) IMPACTS ON SOIL MOISTURE SIMULATION

(i) Soil moisture variability

Differences in daily soil moisture variations (corre-

lations) between Crun and the sensitivity tests (Srun,

Vrun, and SVrun) and the significance of these differ-

ences vary by region (Table 1). Updating only soil tex-

ture parameters in Noah (Srun) resulted in significantly

higher soil moisture correlations (i.e., improvement) at

the 25-cm depth in NE and the 5-cm depth in WTX,

while showing no improvement in CO,OK, andUT.Not

surprisingly, using observed soil texture resulted in sig-

nificant increases in soil moisture correlations at all

depths inAL, where differences betweenNLDAS-2 and

NASMD soil textures were greatest. Srun resulted in a

large decrease in correlations at the 5-cm depth in MI,

suggesting that the default NLDAS-2 soil texture is

more representative of actual conditions than the site-

specific soil texture.

Updating only land cover parameters in Noah (Vrun)

resulted in significant improvements in modeled soil

moisture variability at the 5-cm depth in CO, the 25-cm

depth inNE, and the 5-cm depth inWTX. Correlations at

all depths in OK increased significantly in Vrun, corre-

sponding with the lack of correspondence between

NLDAS-2 and NASMD vegetation types. Correlations

at the 5- and 25-cm depths inAL increased significantly in

Vrun, but the 70-cm soil moisture correlations decreased

significantly. This could be attributable to differences in

root-zone depth and corresponding ET variations and is

explored in more detail in section 4a(2).

Changing Noah soil texture and vegetation parameters

separately produced mixed results. In some regions the

accuracy of the modeled soil moisture increased, while

other regions showed no change or even deterioration in

model performance. Therefore, it is no surprise that the

combined SVrun shows similar variability with respect to

improvements in the accuracy of model-simulated soil
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moisture. SVrun resulted in significantly increased cor-

relations at all depths in AL, mostly as a function of

changes in soil texture. Significant improvements in

SVrun were also seen at the 5-cm depth in CO, the 25-cm

depth in NE, the 25- and 70-cm depths in OK, and the

5-cm depth inWTX. Significant decreases in correlations

are seen in the 25-cm depth in CO, the 5-cm depth in MI

(mostly as a function of changes in soil texture), and the

25-cm depth in WTX. Overall, Srun, Vrun, and SVrun

resulted in more statistically significant improvements in

model performance, but there was substantial spatial

variability.

(ii) Soil moisture magnitude

The changes in the strength of the correlations be-

tween observed and model-simulated soil moisture

anomalies are used to identify changes in model per-

formance. In this section, we detail significant changes

in MAE corresponding to Srun, Vrun, and SVrun

(Table 2), which represent improvements or deteriorations

in the magnitude of model-simulated soil moisture. The

RMSE statistics were very similar to those of MAE, in

spite of some differences, and are therefore listed

Table 3. Updating only the soil texture parameter (Srun)

resulted in significant improvements in MAE at the 25-

and 70-cm depths in AL, the 25-cm depth in NE, and all

depths in WTX. It should be noted that Srun model soil

moisture improvements in WTX and NE are on average

less than 0.005m3m23, whereas significant improvements

in AL are much larger, with an average of 0.02m3m23.

Small but statistically significant increases in MAE

(deterioration) occurred at all depths in CO and OK for

Srun.

Updating only the vegetation parameter (Vrun)

resulted in significant improvements in MAE at the

5-cm depth in AL, CO, and UT; the 25-cm depth in NE;

and both the 25- and 70-cm depths in WTX. Similar to

Srun, significant deterioration is seen at all depths in

OK. Interestingly, soil moisture at the 25- and 70-cm

depths in AL had significant improvements (decreased

MAE) in Srun, but it showed significant deterioration

(increased MAE) in Vrun. Changing the soil texture in

AL resulted in improved model performance, whereas

changing the vegetation type resulted in decreased

FIG. 3. Comparison of site-observed soil texture (solid circle) fromNASMD andmodel-used soil texture fromNLDAS-2 (open circle) for

385 sites in the seven regions.
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performance. It is also interesting that changes in

vegetation type (Vrun) resulted in increased correla-

tions in OK, but also increased MAE. This suggests

that prescribing the site-specific vegetation type in OK

improves the model’s ability to capture soil moisture

variability and simultaneously increases model error.

The combined effect of soil texture and vegetation

changes (SVrun) resulted in significant improvements in

modeled soil moisture magnitude at the 5-cm depth in

AL, CO, andUT; the 25-cm depth at NE; and the 25- and

70-cm depths at WTX. Improvements in soil moisture

magnitude from Srun at the 25- and 70-cm depths in AL

are offset by deteriorations from Vrun at the same

depths, resulting in significant increases in MAE for

SVrun. This also occurs at the 5-cm depth in WTX, al-

though there are much smaller changes inMAE between

Srun andVrun. In general, changes in the soil texture and

vegetation type have variable impacts on Noah’s ability

to accurately simulate soil moisture variability and mag-

nitude. These variations are attributable to the original

differences in soil texture and vegetation type between

NLDAS-2 and NASMD. For example, changing the soil

texture parameter in AL had a much more beneficial

impact on soil moisture variability and magnitude than

changing the vegetation type.

(iii) Seasonal variation

Our results show that soil texture and vegetation type

mismatches have a significant impact on correlation and

the MAE and RMSE values of the simulated daily soil

moisture for all seven regions. The impact is specific to

the soil layers and regions that were examined here. This

section will discuss how these impacts vary on a monthly

and seasonal basis. For a givenmonth and soil depth, the

soil moisture anomalies were combined together for all

available years (i.e., 5–14 years) to compute the corre-

lation. There were at least 140 (i.e., 28 3 5 in February

with a 5-yr period) sample data pairs for this calculation.

Therefore, the anomaly correlation is significant at the

95% confidence level when the value is larger than 0.20

FIG. 4. Comparison of site-observed vegetation type (solid circle) from NASMD and model-used vegetation type from NLDAS-2 (open

circle) for 385 sites in the seven regions.

OCTOBER 2015 X IA ET AL . 1989



(Reichle et al. 2004; Xia et al. 2015). The variation in

correlations for Crun and differences in correlations

between the three sensitivity tests are shown in Fig. 5. If

the difference is .0.05 or ,20.05, the impact of soil

texture and vegetation type on the correlation is signif-

icant at the 95% confidence level. The results show

significant differences in correlations between Srun,

Vrun, and SVrun in all regions except for OK. Monthly

variability in differences between runs are highest in AL

andWTX, where large (small) positive differences occur

from September to May (from June to August) in

SVrun. Consistent with Tables 1 and 2, changes in soil

texture have a larger impact on soil moisture correla-

tions, particularly in AL, NE, and WTX.

Table 4 shows the seasonal variation of Crun daily

correlations for different soil depths in CO, MI, and UT.

Even though the correlations vary by region, month, and

depth, all correlation coefficients are significant at the

95% confidence level. Corresponding differences of the

correlations between sensitivity tests (Srun, Vrun, and

SVrun) and Crun (Fig. 6) show either positive values or

negative values outside60.05, indicating that the changes

are statistically significant. Mismatches in vegetation type

have significant impacts in CO andUT, while soil texture

mismatches have significant impacts in MI.

Variations in MAE by month and soil depth for Crun,

and the MAE differences between the three tests (Srun,

Vrun, and SVrun) and Crun, are also calculated for AL,

NE, OK, andWTX (Fig. 7). In general, MAE values are

smaller in the summer than in the winter, consistent with

reduced volumetric water content in the summer season

in these regions. Mismatches in soil texture significantly

reduce MAE in AL and WTX and significantly increase

MAE in OK. In contrast, mismatches in vegetation type

significantly increase MAE in AL and OK, particularly

during the warm season and in the deeper soil layers.

The monthly variations in MAE can be seen for SVrun

in all four regions, although the differences in MAE are

not significant in NE (Fig. 7). The comparison between

Srun and Vrun shows that the latter has a larger impact

on soil moisture magnitude. Certainly combined effects

(i.e., SVrun) mainly come from the effect of vegetation

type change. Similar results are found in CO, MI, and

UT (Fig. 8), although most of them do not have signifi-

cant MAE differences.

Overall, mismatches in soil texture and vegetation

type have significant effects on soil moisture variability

and magnitude in most regions, but do not always lead

to improvements. The mismatches in vegetation tend

to have a larger impact on soil moisture magnitude,

TABLE 1. Correlations between simulated and observed daily

soil moisture anomaly for Crun, Srun, Vrun, and SVrun in the

seven regions. The values that have significant differences between

tests and Noah control at the 95% confidence level are represented

in boldface (improvement in italics).

Soil layer Crun (lower limit, upper limit) Srun Vrun SVrun

AL

5 cm 0.42 (0.39, 0.44) 0.56 0.46 0.58

25 cm 0.57 (0.55, 0.59) 0.70 0.63 0.72

70 cm 0.51 (0.49, 0.53) 0.62 0.47 0.56

CO

5 cm 0.55 (0.53, 0.58) 0.57 0.67 0.70

25 cm 0.67 (0.65, 0.69) 0.66 0.66 0.63

MI

5 cm 0.67 (0.65, 0.69) 0.59 0.65 0.58
NE

5 cm 0.25 (0.20, 0.29) 0.26 0.21 0.21

25 cm 0.66 (0.63, 0.69) 0.83 0.86 0.86

70 cm 0.88 (0.86, 0.89) 0.88 0.88 0.88

OK

5 cm 0.80 (0.79, 0.81) 0.80 0.82 0.81

25 cm 0.85 (0.84, 0.86) 0.84 0.87 0.87

70 cm 0.89 (0.89, 0.90) 0.90 0.91 0.91

WTX

5 cm 0.84 (0.83, 0.85) 0.86 0.88 0.86

25 cm 0.89 (0.88, 0.90) 0.90 0.84 0.86
70 cm 0.88 (0.87, 0.89) 0.88 0.85 0.89

UT

5 cm 0.68 (0.66, 0.70) 0.69 0.69 0.68

25 cm 0.71 (0.69, 0.73) 0.71 0.70 0.70

TABLE 2. Values of MAE (m3m23) between simulated and

observed daily soil moisture for Crun, Srun, Vrun, and SVrun in

seven states. The value that has a significant difference between

tests and Noah control at the 95% confidence level is represented

in boldface (reduction in italics, two-sample Student’s t test).

Soil layer Crun Srun Vrun SVrun

AL

5 cm 0.0583 0.0582 0.0556 0.0554

25 cm 0.0604 0.0418 0.0710 0.0505

70 cm 0.1008 0.0777 0.1370 0.1072

CO

5 cm 0.0446 0.0454 0.0415 0.0417

25 cm 0.0562 0.0589 0.0632 0.0656

MI

5 cm 0.0315 0.0320 0.0325 0.0316

NE

5 cm 0.0195 0.0204 0.0227 0.0242

25 cm 0.0129 0.0127 0.0121 0.0125

70 cm 0.0281 0.0281 0.0281 0.0281

OK

5 cm 0.0320 0.0404 0.0339 0.0423

25 cm 0.0432 0.0532 0.0490 0.0594
70 cm 0.0553 0.0674 0.0684 0.0840

WTX

5 cm 0.0265 0.0257 0.0268 0.0277

25 cm 0.0352 0.0280 0.0318 0.0279

70 cm 0.0306 0.0245 0.0235 0.0194

UT

5 cm 0.0616 0.0614 0.0629 0.0630
25 cm 0.0540 0.0541 0.0617 0.0619
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particularly for the shallow soil layer in AL and OK.

This is most likely attributable to large differences in

vegetation parameters (Figs. 3a,f). The increases in

model accuracy (correlations and values of MAE and

RMSE) are determined by the amount of disagreement

between the NLDAS-2 and NASMD soil texture and

vegetation types. The impact of these mismatches is

also dependent on the soil layer and geographic loca-

tion. The effects vary from month to month and, as

expected, the impacts of vegetation mismatches are

larger in summer than in winter.

2) IMPACTS ON EVAPOTRANSPIRATION

As shown in Fig. 2 and Eqs. (2)–(7), evapotranspira-

tion is an important variable that affects soil moisture. At

the same time, evapotranspiration is modulated by soil

water content. Evapotranspiration generally increases

as soil moisture and/or atmospheric demand increases.

In regions where atmospheric demand for moisture ex-

ceeds soil moisture availability, evapotranspiration is

constrained by soil moisture. Therefore, soil texture and

vegetation differences not only affect soil moisture, but

they also influence evapotranspiration. The comparisons

between the daily evapotranspiration climatologies of

Crun, Srun, Vrun, and SVrun are presented for AL,

CO, MI, NE, OK, and WTX (Fig. 9). Not surprisingly,

changes in only the soil texture parameter do not result

in large changes in evapotranspiration. However, the

differences between SVrun and Crun or Vrun and Crun

are large, suggesting that vegetation mismatches have a

much larger impact on variations in the evapotranspi-

ration climatology than soil texture mismatches. This

makes sense because vegetation type directly controls

evapotranspiration through rooting depth and canopy

resistance and indirectly controls evapotranspiration

through soil moisture, as discussed in section 3a. Overall,

the site-specific vegetation from NASMD generates

lower evapotranspiration compared to the default Noah

vegetation for all regions and seasons, except for spring

and early summer in AL, MI, and OK. These results

suggest that mismatches in vegetation type that lead to

an underestimation (overestimation) of ET result in

overly wet (dry) soils in the root zone. However, results

suggested that mismatched vegetation type most often

leads to overestimation of ET inCrun compared toVrun

and SVrun. These errors in ET estimation can provide

feedback to boundary layer processes that will result in

enhanced or diminished moisture flux.

b. Pointwise analysis from soil and vegetation change
experiments

As discussed in section 4a, soil texture and vegetation

type mismatches have significant impacts on soil mois-

ture variations (correlation) and magnitude (MAE and

TABLE 3. Values of RMSE (m3m23) and its 95% CI are calculated for Noah, and RMSEs (m3m23) between simulated and observed

daily soil moisture are calculated for Srun, Vrun, and SVrun at seven states. The value that has a significant difference between tests and

Noah control at the 95% CI is represented in boldface (decrease in italics).

Soil layer Crun Srun Vrun SVrun

AL

5 cm 0.0685 6 0.0012 0.0705 6 0.0013 0.0653 6 0.0011 0.0638 6 0.0012

25 cm 0.0694 6 0.0011 0.0494 6 0.0009 0.0776 6 0.0010 0.0570 6 0.0009

70 cm 0.1077 6 0.0012 0.0854 6 0.0012 0.1456 6 0.0016 0.1171 6 0.0015

CO

5 cm 0.0526 6 0.0014 0.0534 6 0.0014 0.0505 6 0.0015 0.0508 6 0.0015

25 cm 0.0616 6 0.0013 0.0644 6 0.0013 0.0696 6 0.0014 0.0719 6 0.0015

MI

5 cm 0.0540 6 0.0019 0.0521 6 0.0018 0.0554 6 0.0019 0.0526 6 0.0018

NE

5 cm 0.0850 6 0.0033 0.0848 6 0.0012 0.0832 6 0.0012 0.0896 6 0.0013

25 cm 0.0463 6 0.0017 0.0301 6 0.0006 0.0231 6 0.0008 0.0231 6 0.0009

70 cm 0.0270 6 0.0008 0.0270 6 0.0014 0.0270 6 0.0014 0.0270 6 0.0014

OK

5 cm 0.0356 6 0.0005 0.0435 6 0.0005 0.0372 6 0.0004 0.0452 6 0.0005

25 cm 0.0456 6 0.0004 0.0552 6 0.0004 0.0510 6 0.0004 0.0610 6 0.0004

70 cm 0.0567 6 0.0004 0.0685 6 0.0004 0.0724 6 0.0007 0.0874 6 0.0008

WTX

5 cm 0.0360 6 0.0008 0.0343 6 0.0007 0.0358 6 0.0007 0.0360 6 0.0007

25 cm 0.0791 6 0.0023 0.0743 6 0.0023 0.0773 6 0.0023 0.0735 6 0.0023

70 cm 0.0557 6 0.0015 0.0513 6 0.0015 0.0515 6 0.0015 0.0479 6 0.0015

UT

5 cm 0.0582 6 0.0022 0.0562 6 0.0022 0.0536 6 0.0021 0.0532 6 0.0021

25 cm 0.0599 6 0.0019 0.0625 6 0.0019 0.0646 6 0.0019 0.0671 6 0.0019
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RMSE). Greater evapotranspiration in spring and

summer in Crun results in decreased summertime deep-

layer soil moisture as compared to Vrun. This results in

larger MAE values in the summer. Because of the effect

of multiple sites being averaged for each region, it is not

clear if Crun reasonably represents the impact of

changes in soil texture and vegetation type on evapo-

transpiration, total runoff, and soil moisture. These im-

pacts are subsequently analyzed at two selected grid

points: MI1 (41.818N, 83.818W) and TX1 (33.198N,

101.348W). These two sites were selected because they

have the same vegetation type and large mismatches in

soil texture. The results show that sites with loam (clay)

soils havemore (less) evapotranspiration, lower (higher)

soil moisture content, and less (more) total runoff.

This manifests as differences in evapotranspiration, soil

moisture, and runoff between Crun and Srun at the MI1

and TX1 sites. The results suggest that Noah can rea-

sonably simulate the qualitative impact of soil texture

change on evapotranspiration, runoff, and soil moisture,

although this impactmay be small on evapotranspiration

and total runoff (Fig. 10).

A comparison of simulated evapotranspiration, total

runoff, and soil moisture for Crun and Vrun is performed

(Fig. 11) at two selected grid points, AL1 (34.198N,

87.198W) and CO1 (39.698N, 105.698W). These two sites

are selected because they have the same soil texture

(i.e., sandy loam) and large mismatches in vegetation

type. Site CO1 is a mountain location with substantial

FIG. 5. Variation of anomaly correlation between simulated and observed daily soil moisture and their differences (Srun 2 Crun,

Vrun2Crun, and SVrun2Crun) with soil depth andmonth inAL, NE,OK, andWTX (TX). Differences outside of60.05 are significant

at the 95% confidence level. Positive differences denote improvement/increase in anomaly correlation.

TABLE 4. The variation of daily anomaly correlation (all values

are significant at the 95% confidence level) with month and depth

in CO, MI, and UT for the warm season for Crun.

Month

CO at

5 cm

CO at

25 cm

MI at

5 cm

UT at

5 cm

UT at

25 cm

May 0.59 0.67 0.63 0.51 0.50

Jun 0.59 0.83 0.60 0.74 0.91

Jul 0.57 0.64 0.70 0.61 0.90

Aug 0.71 0.81 0.74 0.71 0.68

Sep 0.70 0.58 0.72 0.77 0.70

1992 JOURNAL OF HYDROMETEOROLOGY VOLUME 16



snowmelt in spring. This has a large impact on the sea-

sonal cycle of total runoff (Fig. 11b) and soil moisture

(Figs. 11c–f). The vegetation type at AL1 is evergreen

needleleaf forest for Crun and grass for Vrun. At CO1,

Crun is set to grass and Vrun is set to mixed forest. The

results show that forest and mixed forest generate larger

evapotranspiration, less total runoff, and less soil mois-

ture than grass, as expected. However, the differences in

soil moisture in the 1–2-m soil layer (i.e., SM4) are

smaller than in other layers, despite large differences in

FIG. 6. Difference of anomaly correlation between simulated and observed daily soil moisture [Srun2 Crun (red

line), Vrun 2 Crun (green line), and SVrun 2 Crun (blue line)] from month to month in (a) CO at 5 cm, (b) CO at

25 cm, (c) MI at 5 cm, (d) UT at 5 cm, and (e) UT at 25 cm. Differences outside of 60.05 are significant at the 95%

confidence level. Positive differences denote improvement/increase in anomaly correlation.
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rooting depth between the vegetation types. The reasons

for this phenomenon are unclear and need further in-

vestigation. It is possible that the 10-yr spinup is not

sufficient for Vrun when there are large vegetation

mismatches (e.g., from grass to forest or from forest to

grass). At CO1, there is a shift in the timing of peak

runoff and soil moisture in the first three soil layers

when vegetation type is changed from grass to mixed

cover. This is because changes in vegetation lead to

changes in the timing of snowmelt. In particular for this

experiment, it looks like forest leads to earlier and faster

snowmelt. Overall, these results indicate that Noah can

reasonably simulate the qualitative impact that changes

in vegetation type have on evaporation, total runoff, and

soil moisture. The quantitative impact is difficult to assess

and examine in this study and needs further investigation.

These results further highlight the importance of im-

proving the representativeness of soil texture and vege-

tation type. This can be accomplished through adding

high-resolution model configurations, such as the tiling

approach that is currently under development and that

will be included in future versions of Noah.

5. Conclusions

Soil moisture simulations include many complex lin-

ear and nonlinear physical processes. Simulation errors

can arise from 1) errors in the forcing data; 2) errors in

the model structure, as described in the first part of our

companion paper (Xia et al. 2015); and/or 3) errors in

model parameters such as soil texture and vegetation

type mismatches. This paper investigates the impact of

soil texture and vegetation type mismatches on soil

moisture, evapotranspiration, and total runoff. The re-

sults show that Noah is sensitive to changes in soil tex-

ture and vegetation type in most regions and soil layers,

and the sensitivity varies depending on the time of the

year. The results presented here are mixed; the use of

site-observed soil texture and vegetation type does not

necessarily improve soil moisture simulations (i.e., it

FIG. 7. Variation of MAE (m3m23) between simulated and observed daily soil moisture and their differences (Srun 2 Crun, Vrun 2
Crun, and SVrun2 Crun) with soil depth and month in AL, NE, OK, and WTX (TX). Differences outside of60.01 are significant at the

95% confidence level. Negative differences denote improvement/reduction increase in MAE.
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does not increase anomaly correlation and decrease

MAE and RMSE values for all regions and soil layers).

Noah is relativelywell calibratedwith themodel-specified

soil textures and vegetation types (Livneh et al. 2010;

Smith et al. 2012; Wei et al. 2013) so that compensation

effects (e.g., effect of the ill-calibrated model parameters

from model-specified soil texture and vegetation type)

may exist in Noah. The pointwise analysis shows that

Noah can reasonably simulate variations in daily evapo-

transpiration, soil moisture, and total runoff when soil

texture (vegetation type) is changed from loam (forest) to

clay (grasslands), or vice versa. This suggests that the

FIG. 8. Difference of MAE (m3m23) between simulated and observed daily soil moisture [Srun2 Crun (red line),

Vrun2 Crun (green line), and SVrun2 Crun (blue line)] from month to month in (a) CO at 5 cm, (b) CO at 25 cm,

(c)MI at 5 cm, (d)UT at 5 cm, and (e)UT at 25 cm.Differences outside of60.01 are significant at the 95%confidence

level. Negative differences denote improvement/reduction increase in MAE.
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performance of Noah can be further improved by tuning

model parameters using site-observed soil texture and

vegetation type as was done inWei et al. (2013). It should

be noted that this study was performed using only Noah.

Similar studies using the other three NLDAS-2 models

will be addressed in a future paper.

All of the sensitivity tests undertaken in this

study strictly follow the NLDAS-2 configuration and

experimental design without any extra calibration. It is rec-

ognized that this is a fairly simplistic study (e.g., parameter

swapping) with many limitations. Some more robust

methods such as using aMonteCarlo sampling procedure

(Spear and Hornberger 1980; Wagener et al. 2001),

generalized likelihood uncertainty estimation (GLUE;

Beven and Binley 1992; Beven 2002), Bayesian stochastic

inversion (BSI; Jackson et al. 2003; Xia et al. 2004), and

FIG. 9. Differences of simulated daily evapotranspiration climatology [Srun2 Crun (red line), Vrun2 Crun (green

line), and SVrun 2 Crun (blue line)] in (a) AL, (b) CO, (c) MI, (d) NE, (e) OK, and (f) WTX.
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the complex approach used in Rosero et al. (2009, 2010)

are more appropriate for performing parameter sensi-

tivity tests to investigate the impacts of model parameters

on water fluxes, energy fluxes, and the simulation of state

variables. These approaches will be applied in the future

studies using the other three NLDAS-2 models.

Noah has simple soil hydrology, soil physics, and

vegetation dynamics, with the soil texture in the top 5 cm

FIG. 10. Comparison of simulated (a) evapotranspiration, (b) total runoff, (c) 5-cm soil moisture (SM1), (d) 25-cm

soil moisture (SM2), (e) 70-cm soil moisture (SM3), and (f) 150-cm soil moisture (SM4) at two points: MI1 (41.818N,

83.818W) in Michigan and TX1 (33.198N, 101.348W) in West Texas. At MI1, soil texture is changed from loam (red

line) into clay (green line). At TX1, soil texture is changed from clay (blue line) into loam (orange line).

OCTOBER 2015 X IA ET AL . 1997



representing the soil texture in the entire 2-m soil col-

umn (four soil layers) for a given 1/88 grid cell. In the real

world, soil texture is not homogeneous with depth (or

over space). This heterogeneity will lead to the variations

in the corresponding soil and hydraulic parameters

(Peschel et al. 2006). Noah also uses a single dominant

vegetation type for each grid cell. Noah does not consider

any subgrid tiling of soil and vegetation parameters.

These issues may be overcome by adding spatial tiling or

subgrid process for soil and vegetation classification and

adding more reasonable soil profiles with depth-varying

soil textures. In addition, it is recommended that the

FIG. 11. As in Fig. 10, but for AL1 (34.198N, 87.198W) in Alabama and CO1 (39.698N, 105.698W) in Colorado. At

AL1, vegetation type is changed from deciduous needleleaf forest (red line) into grasslands (green line). At CO1,

vegetation type is changed from grasslands (blue line) into mixed cover (orange line).
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equations from Cosby et al. (1984) be used to recalculate

the parameters in each soil layer in Noah when the per-

centages of sand, silt, and clay are known. This will help to

avoid the soil texture classification issues identified in this

study. These issues will be addressed in the future by the

NCEP/EMCNoah development team and its collaborators.
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